Del Pezzo Surfaces and Semiregular Polytopes

نویسنده

  • Jae-Hyouk Lee
چکیده

In this article, we research on the correspondences between the geometry of del Pezzo surfaces Sr and the geometry of Gosset polytopes (r−4)21. We study skew a-lines(a ≤ r), exceptional systems and rulings, and we explain their correspondences to (a− 1)-simplexes, (r − 1)-simplexes and (r − 1)-crosspolytopes in (r − 4)21. And we apply these correspondences to the monoidal transform for lines and rulings on del Pezzo surfaces. And we explore the Steiner system on the set of lines on Sr and their correspondence to the inscribed polytopes in (r − 4)21.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Degenerations of Del Pezzo Surfaces and Gromov-Witten Invariants of the Hilbert Scheme of Conics

This paper investigates low-codimension degenerations of Del Pezzo surfaces. As an application we determine certain characteristic numbers of Del Pezzo surfaces. Finally, we analyze the relation between the enumerative geometry of Del Pezzo surfaces and the Gromov-Witten invariants of the Hilbert scheme of conics in P .

متن کامل

On the Arithmetic of Del Pezzo Surfaces of Degree 2

Del Pezzo surfaces are smooth projective surfaces, isomorphic over the algebraic closure of the base ,eld to P P or the blow-up of P in up to eight points in general position. In the latter case the del Pezzo surface has degree equal to 9 minus the number of points in the blow-up. The arithmetic of del Pezzo surfaces over number ,elds is an active area of investigation. It is known that the Has...

متن کامل

The Enumerative Geometry of Del Pezzo Surfaces via Degenerations

This paper investigates low-codimension degenerations of Del Pezzo surfaces. As an application we determine certain characteristic numbers of Del Pezzo surfaces. Finally, we analyze the relation between the enumerative geometry of Del Pezzo surfaces and the Gromov-Witten invariants of the Hilbert scheme of conics in P .

متن کامل

Weak Approximation for General Degree Two Del Pezzo Surfaces

We address weak approximation for certain del Pezzo surfaces defined over the function field of a curve. We study the rational connectivity of the smooth locus of degree two del Pezzo surfaces with two A1 singularities in order to prove weak approximation for degree two del Pezzo surfaces with square-free discriminant.

متن کامل

The Brauer-manin Obstruction on Del Pezzo Surfaces of Degree 2

This paper explores the computation of the Brauer-Manin obstruction on Del Pezzo surfaces of degree 2, with examples coming from the class of “semi-diagonal” Del Pezzo surfaces of degree 2. It is conjectured that the failure of the Hasse principle for a broad class of varieties, including Del Pezzo surfaces, can always be explained by a nontrivial Brauer-Manin obstruction. We provide computatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009